原文地址:http://www.odi.ch/prog/design/newbies.php 
每天在写Java程序, 其实里面有一些细节大家可能没怎么注意, 这不, 有人总结了一个我们编程中常见的问题. 虽然一般没有什么大问题, 但是最好别这样做. 另外这里提到的很多问题其实可以通过Findbugs(http://findbugs.sourceforge.net/ )来帮我们进行检查出来. 
字符串连接误用 
Java代码  收藏代码
  1. String s = "";  
  2. for (Person p : persons) {  
  3.     s += ", " + p.getName();  
  4. }  
  5. s = s.substring(2); //remove first comma  

Java代码  收藏代码
  1. StringBuilder sb = new StringBuilder(persons.size() * 16); // well estimated buffer  
  2. for (Person p : persons) {  
  3.     if (sb.length() > 0) sb.append(", ");  
  4.     sb.append(p.getName);  
  5. }  

错误的使用StringBuffer 
Java代码  收藏代码
  1. StringBuffer sb = new StringBuffer();  
  2. sb.append("Name: ");  
  3. sb.append(name + '\n');  
  4. sb.append("!");  
  5. ...  
  6. String s = sb.toString();  

问题在第三行, append char比String性能要好, 另外就是初始化StringBuffer没有指定size, 导致中间append时可能重新调整内部数组大小. 如果是JDK1.5最好用StringBuilder取代StringBuffer, 除非有线程安全的要求. 还有一种方式就是可以直接连接字符串. 缺点就是无法初始化时指定长度. 

Java代码  收藏代码
  1. StringBuilder sb = new StringBuilder(100);  
  2. sb.append("Name: ");  
  3. sb.append(name);  
  4. sb.append("\n!");  
  5. String s = sb.toString();  

或者这样写: 
Java代码  收藏代码
  1. String s = "Name: " + name + "\n!";  

测试字符串相等性 

Java代码  收藏代码
  1. if (name.compareTo("John") == 0) ...  
  2. if (name == "John") ...  
  3. if (name.equals("John")) ...  
  4. if ("".equals(name)) ...  

上面的代码没有错, 但是不够好. compareTo不够简洁, ==原义是比较两个对象是否一样. 另外比较字符是否为空, 最好判断它的长度. 

Java代码  收藏代码
  1. if ("John".equals(name)) ...  
  2. if (name.length() == 0) ...  
  3. if (name.isEmpty()) ...  

数字转换成字符串 

Java代码  收藏代码
  1. "" + set.size()  
  2. new Integer(set.size()).toString()   


Java代码  收藏代码
  1. String.valueOf(set.size())  

利用不可变对象(Immutable) 

Java代码  收藏代码
  1. zero = new Integer(0);  
  2. return Boolean.valueOf("true");  


Java代码  收藏代码
  1. zero = Integer.valueOf(0);  
  2. return Boolean.TRUE;  

请使用XML解析器 

Java代码  收藏代码
  1. int start = xml.indexOf("<name>") + "<name>".length();  
  2. int end = xml.indexOf("</name>");  
  3. String name = xml.substring(start, end);  


Java代码  收藏代码
  1. SAXBuilder builder = new SAXBuilder(false);  
  2. Document doc = doc = builder.build(new StringReader(xml));  
  3. String name = doc.getRootElement().getChild("name").getText();  

请使用JDom组装XML 

Java代码  收藏代码
  1. String name = ...  
  2. String attribute = ...  
  3. String xml = "<root>"  
  4.             +"<name att=\""+ attribute +"\">"+ name +"</name>"  
  5.             +"</root>";  


Java代码  收藏代码
  1. Element root = new Element("root");  
  2. root.setAttribute("att", attribute);  
  3. root.setText(name);  
  4. Document doc = new Documet();  
  5. doc.setRootElement(root);  
  6. XmlOutputter out = new XmlOutputter(Format.getPrettyFormat());  
  7. String xml = out.outputString(root);  

XML编码陷阱 

Java代码  收藏代码
  1. String xml = FileUtils.readTextFile("my.xml");  

因为xml的编码在文件中指定的, 而在读文件的时候必须指定编码. 另外一个问题不能一次就将一个xml文件用String保存, 这样对内存会造成不必要的浪费, 正确的做法用InputStream来边读取边处理. 为了解决编码的问题, 最好使用XML解析器来处理 
未指定字符编码 

Java代码  收藏代码
  1. Reader r = new FileReader(file);  
  2. Writer w = new FileWriter(file);  
  3. Reader r = new InputStreamReader(inputStream);  
  4. Writer w = new OutputStreamWriter(outputStream);  
  5. String s = new String(byteArray); // byteArray is a byte[]  
  6. byte[] a = string.getBytes();  

这样的代码主要不具有跨平台可移植性. 因为不同的平台可能使用的是不同的默认字符编码. 

Java代码  收藏代码
  1. Reader r = new InputStreamReader(new FileInputStream(file), "ISO-8859-1");  
  2. Writer w = new OutputStreamWriter(new FileOutputStream(file), "ISO-8859-1");  
  3. Reader r = new InputStreamReader(inputStream, "UTF-8");  
  4. Writer w = new OutputStreamWriter(outputStream, "UTF-8");  
  5. String s = new String(byteArray, "ASCII");  
  6. byte[] a = string.getBytes("ASCII");  

未对数据流进行缓存 

Java代码  收藏代码
  1. InputStream in = new FileInputStream(file);  
  2. int b;  
  3. while ((b = in.read()) != -1) {  
  4.    ...  
  5. }  

上面的代码是一个byte一个byte的读取, 导致频繁的本地JNI文件系统访问, 非常低效, 因为调用本地方法是非常耗时的. 最好用BufferedInputStream包装一下. 曾经做过一个测试, 从/dev/zero下读取1MB, 大概花了1s, 而用BufferedInputStream包装之后只需要60ms, 性能提高了94%! 这个也适用于output stream操作以及socket操作. 

Java代码  收藏代码
  1. InputStream in = new BufferedInputStream(new FileInputStream(file));  

无限使用heap内存 

Java代码  收藏代码
  1. byte[] pdf = toPdf(file);  

这里有一个前提, 就是文件大小不能讲JVM的heap撑爆. 否则就等着OOM吧, 尤其是在高并发的服务器端代码. 最好的做法是采用Stream的方式边读取边存储(本地文件或database). 

Java代码  收藏代码
  1. File pdf = toPdf(file);  

另外, 对于服务器端代码来说, 为了系统的安全, 至少需要对文件的大小进行限制. 
不指定超时时间 
错误的代码: 
Java代码  收藏代码
  1. Socket socket = ...  
  2. socket.connect(remote);  
  3. InputStream in = socket.getInputStream();  
  4. int i = in.read();  

这种情况在工作中已经碰到不止一次了. 个人经验一般超时不要超过20s. 这里有一个问题, connect可以指定超时时间, 但是read无法指定超时时间. 但是可以设置阻塞(block)时间. 

Java代码  收藏代码
  1. Socket socket = ...  
  2. socket.connect(remote, 20000); // fail after 20s  
  3. InputStream in = socket.getInputStream();  
  4. socket.setSoTimeout(15000);  
  5. int i = in.read();  

另外, 文件的读取(FileInputStream, FileChannel, FileDescriptor, File)没法指定超时时间, 而且IO操作均涉及到本地方法调用, 这个更操作了JVM的控制范围, 在分布式文件系统中, 对IO的操作内部实际上是网络调用. 一般情况下操作60s的操作都可以认为已经超时了. 为了解决这些问题, 一般采用缓存和异步/消息队列处理. 
频繁使用计时器 
错误代码: 
Java代码  收藏代码
  1. for (...) {  
  2.   long t = System.currentTimeMillis();  
  3.   long t = System.nanoTime();  
  4.   Date d = new Date();  
  5.   Calendar c = new GregorianCalendar();  
  6. }  

每次new一个Date或Calendar都会涉及一次本地调用来获取当前时间(尽管这个本地调用相对其他本地方法调用要快). 
如果对时间不是特别敏感, 这里使用了clone方法来新建一个Date实例. 这样相对直接new要高效一些. 

Java代码  收藏代码
  1. Date d = new Date();  
  2. for (E entity : entities) {  
  3.   entity.doSomething();  
  4.   entity.setUpdated((Date) d.clone());  
  5. }  

如果循环操作耗时较长(超过几ms), 那么可以采用下面的方法, 立即创建一个Timer, 然后定期根据当前时间更新时间戳, 在我的系统上比直接new一个时间对象快200倍: 
Java代码  收藏代码
  1. private volatile long time;  
  2. Timer timer = new Timer(true);  
  3. try {  
  4.   time = System.currentTimeMillis();  
  5.   timer.scheduleAtFixedRate(new TimerTask() {  
  6.     public void run() {  
  7.       time = System.currentTimeMillis();  
  8.     }  
  9.   }, 0L, 10L); // granularity 10ms  
  10.   for (E entity : entities) {  
  11.      entity.doSomething();  
  12.      entity.setUpdated(new Date(time));  
  13.   }  
  14. finally {  
  15.   timer.cancel();  
  16. }  

捕获所有的异常 

Java代码  收藏代码
  1. Query q = ...  
  2. Person p;  
  3. try {  
  4.     p = (Person) q.getSingleResult();  
  5. catch(Exception e) {  
  6.     p = null;  
  7. }  

这是EJB3的一个查询操作, 可能出现异常的原因是: 结果不唯一; 没有结果; 数据库无法访问, 而捕获所有的异常, 设置为null将掩盖各种异常情况. 

Java代码  收藏代码
  1. Query q = ...  
  2. Person p;  
  3. try {  
  4.     p = (Person) q.getSingleResult();  
  5. catch(NoResultException e) {  
  6.     p = null;  
  7. }  

忽略所有异常 
Java代码  收藏代码
  1. try {  
  2.     doStuff();  
  3. catch(Exception e) {  
  4.     log.fatal("Could not do stuff");  
  5. }  
  6. doMoreStuff();  

这个代码有两个问题, 一个是没有告诉调用者, 系统调用出错了. 第二个是日志没有出错原因, 很难跟踪定位问题. 

Java代码  收藏代码
  1. try {  
  2.     doStuff();  
  3. catch(Exception e) {  
  4.     throw new MyRuntimeException("Could not do stuff because: "+ e.getMessage, e);  
  5. }  

重复包装RuntimeException 

Java代码  收藏代码
  1. try {  
  2.   doStuff();  
  3. catch(Exception e) {  
  4.   throw new RuntimeException(e);  
  5. }  


Java代码  收藏代码
  1. try {  
  2.   doStuff();  
  3. catch(RuntimeException e) {  
  4.   throw e;  
  5. catch(Exception e) {  
  6.   throw new RuntimeException(e.getMessage(), e);  
  7. }  
  8. try {  
  9.   doStuff();  
  10. catch(IOException e) {  
  11.   throw new RuntimeException(e.getMessage(), e);  
  12. catch(NamingException e) {  
  13.   throw new RuntimeException(e.getMessage(), e);  
  14. }  

不正确的传播异常 

Java代码  收藏代码
  1. try {  
  2. catch(ParseException e) {  
  3.   throw new RuntimeException();  
  4.   throw new RuntimeException(e.toString());  
  5.   throw new RuntimeException(e.getMessage());  
  6.   throw new RuntimeException(e);  
  7. }  

主要是没有正确的将内部的错误信息传递给调用者. 第一个完全丢掉了内部错误信息, 第二个错误信息依赖toString方法, 如果没有包含最终的嵌套错误信息, 也会出现丢失, 而且可读性差. 第三个稍微好一些, 第四个跟第二个一样. 

Java代码  收藏代码
  1. try {  
  2. catch(ParseException e) {  
  3.   throw new RuntimeException(e.getMessage(), e);  
  4. }  

用日志记录异常 

Java代码  收藏代码
  1. try {  
  2.     ...  
  3. catch(ExceptionA e) {  
  4.     log.error(e.getMessage(), e);  
  5.     throw e;  
  6. catch(ExceptionB e) {  
  7.     log.error(e.getMessage(), e);  
  8.     throw e;  
  9. }  

一般情况下在日志中记录异常是不必要的, 除非调用方没有记录日志. 
异常处理不彻底 

Java代码  收藏代码
  1. try {  
  2.     is = new FileInputStream(inFile);  
  3.     os = new FileOutputStream(outFile);  
  4. finally {  
  5.     try {  
  6.         is.close();  
  7.         os.close();  
  8.     } catch(IOException e) {  
  9.         /* we can't do anything */  
  10.     }  
  11. }  

is可能close失败, 导致os没有close 

Java代码  收藏代码
  1. try {  
  2.     is = new FileInputStream(inFile);  
  3.     os = new FileOutputStream(outFile);  
  4. finally {  
  5.     try { if (is != null) is.close(); } catch(IOException e) {/* we can't do anything */}  
  6.     try { if (os != null) os.close(); } catch(IOException e) {/* we can't do anything */}  
  7. }  

捕获不可能出现的异常 

Java代码  收藏代码
  1. try {  
  2.   ... do risky stuff ...  
  3. catch(SomeException e) {  
  4.   // never happens  
  5. }  
  6. ... do some more ...  


Java代码  收藏代码
  1. try {  
  2.   ... do risky stuff ...  
  3. catch(SomeException e) {  
  4.   // never happens hopefully  
  5.   throw new IllegalStateException(e.getMessage(), e); // crash early, passing all information  
  6. }  
  7. ... do some more ...  

transient的误用 

Java代码  收藏代码
  1. public class A implements Serializable {  
  2.     private String someState;  
  3.     private transient Log log = LogFactory.getLog(getClass());  
  4.       
  5.     public void f() {  
  6.         log.debug("enter f");  
  7.         ...  
  8.     }  
  9. }  

这里的本意是不希望Log对象被序列化. 不过这里在反序列化时, 会因为log未初始化, 导致f()方法抛空指针, 正确的做法是将log定义为静态变量或者定位为具备变量. 

Java代码  收藏代码
  1. public class A implements Serializable {  
  2.     private String someState;  
  3.     private static final Log log = LogFactory.getLog(A.class);  
  4.       
  5.     public void f() {  
  6.         log.debug("enter f");  
  7.         ...  
  8.     }  
  9. }  
  10. public class A implements Serializable {  
  11.     private String someState;  
  12.       
  13.     public void f() {  
  14.         Log log = LogFactory.getLog(getClass());  
  15.         log.debug("enter f");  
  16.         ...  
  17.     }  
  18. }  

不必要的初始化 

Java代码  收藏代码
  1. public class B {  
  2.     private int count = 0;  
  3.     private String name = null;  
  4.     private boolean important = false;  
  5. }  

这里的变量会在初始化时使用默认值:0, null, false, 因此上面的写法有些多此一举. 

Java代码  收藏代码
  1. public class B {  
  2.     private int count;  
  3.     private String name;  
  4.     private boolean important;  
  5. }  

最好用静态final定义Log变量 
Java代码  收藏代码
  1. private static final Log log = LogFactory.getLog(MyClass.class);  

这样做的好处有三: 
  • 可以保证线程安全
  • 静态或非静态代码都可用
  • 不会影响对象序列化

选择错误的类加载器 
错误的代码: 
Java代码  收藏代码
  1. Class clazz = Class.forName(name);  
  2. Class clazz = getClass().getClassLoader().loadClass(name);  

这里本意是希望用当前类来加载希望的对象, 但是这里的getClass()可能抛出异常, 特别在一些受管理的环境中, 比如应用服务器, web容器, Java WebStart环境中, 最好的做法是使用当前应用上下文的类加载器来加载. 

Java代码  收藏代码
  1. ClassLoader cl = Thread.currentThread().getContextClassLoader();  
  2. if (cl == null) cl = MyClass.class.getClassLoader(); // fallback  
  3. Class clazz = cl.loadClass(name);  

反射使用不当 

Java代码  收藏代码
  1. Class beanClass = ...  
  2. if (beanClass.newInstance() instanceof TestBean) ...  

这里的本意是检查beanClass是否是TestBean或是其子类, 但是创建一个类实例可能没那么简单, 首先实例化一个对象会带来一定的消耗, 另外有可能类没有定义默认构造函数. 正确的做法是用Class.isAssignableFrom(Class) 方法. 

Java代码  收藏代码
  1. Class beanClass = ...  
  2. if (TestBean.class.isAssignableFrom(beanClass)) ...  

不必要的同步 

Java代码  收藏代码
  1. Collection l = new Vector();  
  2. for (...) {  
  3.    l.add(object);  
  4. }  

Vector是ArrayList同步版本. 

Java代码  收藏代码
  1. Collection l = new ArrayList();  
  2. for (...) {  
  3.    l.add(object);  
  4. }  

错误的选择List类型 
根据下面的表格数据来进行选择 
 ArrayListLinkedList
add (append)O(1) or ~O(log(n)) if growingO(1)
insert (middle)O(n) or ~O(n*log(n)) if growingO(n)
remove (middle)O(n) (always performs complete copy)O(n)
iterateO(n)O(n)
get by indexO(1)O(n)

HashMap size陷阱 

Java代码  收藏代码
  1. Map map = new HashMap(collection.size());  
  2. for (Object o : collection) {  
  3.   map.put(o.key, o.value);  
  4. }  

这里可以参考guava的Maps.newHashMapWithExpectedSize的实现. 用户的本意是希望给HashMap设置初始值, 避免扩容(resize)的开销. 但是没有考虑当添加的元素数量达到HashMap容量的75%时将出现resize. 

Java代码  收藏代码
  1. Map map = new HashMap(1 + (int) (collection.size() / 0.75));  

对Hashtable, HashMap 和 HashSet了解不够 
这里主要需要了解HashMap和Hashtable的内部实现上, 它们都使用Entry包装来封装key/value, Entry内部除了要保存Key/Value的引用, 还需要保存hash桶中next Entry的应用, 因此对内存会有不小的开销, 而HashSet内部实现其实就是一个HashMap. 有时候IdentityHashMap可以作为一个不错的替代方案. 它在内存使用上更有效(没有用Entry封装, 内部采用Object[]). 不过需要小心使用. 它的实现违背了Map接口的定义. 有时候也可以用ArrayList来替换HashSet. 
这一切的根源都是由于JDK内部没有提供一套高效的Map和Set实现. 
对List的误用 
建议下列场景用Array来替代List: 
  • list长度固定, 比如一周中的每一天
  • 对list频繁的遍历, 比如超过1w次
  • 需要对数字进行包装(主要JDK没有提供基本类型的List)

比如下面的代码. 

Java代码  收藏代码
  1. List<Integer> codes = new ArrayList<Integer>();  
  2. codes.add(Integer.valueOf(10));  
  3. codes.add(Integer.valueOf(20));  
  4. codes.add(Integer.valueOf(30));  
  5. codes.add(Integer.valueOf(40));  


Java代码  收藏代码
  1. int[] codes = { 10203040 };  

Java代码  收藏代码
  1. // horribly slow and a memory waster if l has a few thousand elements (try it yourself!)  
  2. List<Mergeable> l = ...;  
  3. for (int i=0; i < l.size()-1; i++) {  
  4.     Mergeable one = l.get(i);  
  5.     Iterator<Mergeable> j = l.iterator(i+1); // memory allocation!  
  6.     while (j.hasNext()) {  
  7.         Mergeable other = l.next();  
  8.         if (one.canMergeWith(other)) {  
  9.             one.merge(other);  
  10.             other.remove();  
  11.         }  
  12.     }  
  13. }  


Java代码  收藏代码
  1. // quite fast and no memory allocation  
  2. Mergeable[] l = ...;  
  3. for (int i=0; i < l.length-1; i++) {  
  4.     Mergeable one = l[i];  
  5.     for (int j=i+1; j < l.length; j++) {  
  6.         Mergeable other = l[j];  
  7.         if (one.canMergeWith(other)) {  
  8.             one.merge(other);  
  9.             l[j] = null;  
  10.         }  
  11.     }  
  12. }  

实际上Sun也意识到这一点, 因此在JDK中, Collections.sort()就是将一个List拷贝到一个数组中然后调用Arrays.sort方法来执行排序. 
用数组来描述一个结构 
错误用法: 
Java代码  收藏代码
  1. /** 
  2.  * @returns [1]: Location, [2]: Customer, [3]: Incident 
  3.  */  
  4. Object[] getDetails(int id) {...  

这里用数组+文档的方式来描述一个方法的返回值. 虽然很简单, 但是很容易误用, 正确的做法应该是定义个类. 

Java代码  收藏代码
  1. Details getDetails(int id) {...}  
  2. private class Details {  
  3.     public Location location;  
  4.     public Customer customer;  
  5.     public Incident incident;  
  6. }  

对方法过度限制 
错误用法: 
Java代码  收藏代码
  1. public void notify(Person p) {  
  2.     ...  
  3.     sendMail(p.getName(), p.getFirstName(), p.getEmail());  
  4.     ...  
  5. }  
  6. class PhoneBook {  
  7.     String lookup(String employeeId) {  
  8.         Employee emp = ...  
  9.         return emp.getPhone();  
  10.     }  
  11. }  

第一个例子是对方法参数做了过多的限制, 第二个例子对方法的返回值做了太多的限制. 

Java代码  收藏代码
  1. public void notify(Person p) {  
  2.     ...  
  3.     sendMail(p);  
  4.     ...  
  5. }  
  6. class EmployeeDirectory {  
  7.     Employee lookup(String employeeId) {  
  8.         Employee emp = ...  
  9.         return emp;  
  10.     }  
  11. }  

对POJO的setter方法画蛇添足 

Java代码  收藏代码
  1. private String name;  
  2. public void setName(String name) {  
  3.     this.name = name.trim();  
  4. }  
  5. public void String getName() {  
  6.     return this.name;  
  7. }  

有时候我们很讨厌字符串首尾出现空格, 所以在setter方法中进行了trim处理, 但是这样做的结果带来的副作用会使getter方法的返回值和setter方法不一致, 如果只是将JavaBean当做一个数据容器, 那么最好不要包含任何业务逻辑. 而将业务逻辑放到专门的业务层或者控制层中处理. 
正确的做法: 
Java代码  收藏代码
  1. person.setName(textInput.getText().trim());  

日历对象(Calendar)误用 

Java代码  收藏代码
  1. Calendar cal = new GregorianCalender(TimeZone.getTimeZone("Europe/Zurich"));  
  2. cal.setTime(date);  
  3. cal.add(Calendar.HOUR_OF_DAY, 8);  
  4. date = cal.getTime();  

这里主要是对date, time, calendar和time zone不了解导致. 而在一个时间上增加8小时, 跟time zone没有任何关系, 所以没有必要使用Calendar, 直接用Date对象即可, 而如果是增加天数的话, 则需要使用Calendar, 因为采用不同的时令制可能一天的小时数是不同的(比如有些DST是23或者25个小时) 

Java代码  收藏代码
  1. date = new Date(date.getTime() + 8L * 3600L * 1000L); // add 8 hrs  

TimeZone的误用 

Java代码  收藏代码
  1. Calendar cal = new GregorianCalendar();  
  2. cal.setTime(date);  
  3. cal.set(Calendar.HOUR_OF_DAY, 0);  
  4. cal.set(Calendar.MINUTE, 0);  
  5. cal.set(Calendar.SECOND, 0);  
  6. Date startOfDay = cal.getTime();  

这里有两个错误, 一个是没有没有将毫秒归零, 不过最大的错误是没有指定TimeZone, 不过一般的桌面应用没有问题, 但是如果是服务器端应用则会有一些问题, 比如同一时刻在上海和伦敦就不一样, 因此需要指定的TimeZone. 

Java代码  收藏代码
  1. Calendar cal = new GregorianCalendar(user.getTimeZone());  
  2. cal.setTime(date);  
  3. cal.set(Calendar.HOUR_OF_DAY, 0);  
  4. cal.set(Calendar.MINUTE, 0);  
  5. cal.set(Calendar.SECOND, 0);  
  6. cal.set(Calendar.MILLISECOND, 0);  
  7. Date startOfDay = cal.getTime();  

时区(Time Zone)调整的误用 

Java代码  收藏代码
  1. public static Date convertTz(Date date, TimeZone tz) {  
  2.   Calendar cal = Calendar.getInstance();  
  3.   cal.setTimeZone(TimeZone.getTimeZone("UTC"));  
  4.   cal.setTime(date);  
  5.   cal.setTimeZone(tz);  
  6.   return cal.getTime();  
  7. }  

这个方法实际上没有改变时间, 输入和输出是一样的. 关于时间的问题可以参考这篇文章: http://www.odi.ch/prog/design/datetime.php 这里主要的问题是Date对象并不包含Time Zone信息. 它总是使用UTC(世界统一时间). 而调用Calendar的getTime/setTime方法会自动在当前时区和UTC之间做转换. 
Calendar.getInstance()的误用 

Java代码  收藏代码
  1. Calendar c = Calendar.getInstance();  
  2. c.set(2009, Calendar.JANUARY, 15);  

Calendar.getInstance()依赖local来选择一个Calendar实现, 不同实现的2009年是不同的, 比如有些Calendar实现就没有January月份. 

Java代码  收藏代码
  1. Calendar c = new GregorianCalendar(timeZone);  
  2. c.set(2009, Calendar.JANUARY, 15);  

Date.setTime()的误用 

Java代码  收藏代码
  1. account.changePassword(oldPass, newPass);  
  2. Date lastmod = account.getLastModified();  
  3. lastmod.setTime(System.currentTimeMillis());  

在更新密码之后, 修改一下最后更新时间, 这里的用法没有错,但是有更好的做法: 直接传Date对象. 因为Date是Value Object, 不可变的. 如果更新了Date的值, 实际上是生成一个新的Date实例. 这样其他地方用到的实际上不在是原来的对象, 这样可能出现不可预知的异常. 当然这里又涉及到另外一个OO设计的问题, 对外暴露Date实例本身就是不好的做法(一般的做法是在setter方法中设置Date引用参数的clone对象). 另外一种比较好的做法就是直接保存long类型的毫秒数. 
正确的做法: 
Java代码  收藏代码
  1. account.changePassword(oldPass, newPass);  
  2. account.setLastModified(new Date());  

SimpleDateFormat非线程安全误用 

Java代码  收藏代码
  1. public class Constants {  
  2.     public static final SimpleDateFormat date = new SimpleDateFormat("dd.MM.yyyy");  
  3. }  

SimpleDateFormat不是线程安全的. 在多线程并行处理的情况下, 会得到非预期的值. 这个错误非常普遍! 如果真要在多线程环境下公用同一个SimpleDateFormat, 那么做好做好同步(cache flush, lock contention), 但是这样会搞得更复杂, 还不如直接new一个实在. 
使用全局参数配置常量类/接口 
Java代码  收藏代码
  1. public interface Constants {  
  2.     String version = "1.0";  
  3.     String dateFormat = "dd.MM.yyyy";  
  4.     String configFile = ".apprc";  
  5.     int maxNameLength = 32;  
  6.     String someQuery = "SELECT * FROM ...";  
  7. }  

很多应用都会定义这样一个全局常量类或接口, 但是为什么这种做法不推荐? 因为这些常量之间基本没有任何关联, 只是因为公用才定义在一起. 但是如果其他组件需要使用这些全局变量, 则必须对该常量类产生依赖, 特别是存在server和远程client调用的场景. 
比较好的做法是将这些常量定义在组件内部. 或者局限在一个类库内部. 
忽略造型溢出(cast overflow) 

Java代码  收藏代码
  1. public int getFileSize(File f) {  
  2.   long l = f.length();  
  3.   return (int) l;  
  4. }  

这个方法的本意是不支持传递超过2GB的文件. 最好的做法是对长度进行检查, 溢出时抛出异常. 

Java代码  收藏代码
  1. public int getFileSize(File f) {  
  2.   long l = f.length();  
  3.   if (l > Integer.MAX_VALUE) throw new IllegalStateException("int overflow");  
  4.   return (int) l;  
  5. }  

另一个溢出bug是cast的对象不对, 比如下面第一个println. 正确的应该是下面的那个. 
Java代码  收藏代码
  1. long a = System.currentTimeMillis();  
  2. long b = a + 100;  
  3. System.out.println((int) b-a);  
  4. System.out.println((int) (b-a));  

对float和double使用==操作 

Java代码  收藏代码
  1. for (float f = 10f; f!=0; f-=0.1) {  
  2.   System.out.println(f);  
  3. }  

上面的浮点数递减只会无限接近0而不会等于0, 这样会导致上面的for进入死循环. 通常绝不要对float和double使用==操作. 而采用大于和小于操作. 如果java编译器能针对这种情况给出警告. 或者在java语言规范中不支持浮点数类型的==操作就最好了. 

Java代码  收藏代码
  1. for (float f = 10f; f>0; f-=0.1) {  
  2.   System.out.println(f);  
  3. }  

用浮点数来保存money 

Java代码  收藏代码
  1. float total = 0.0f;  
  2. for (OrderLine line : lines) {  
  3.   total += line.price * line.count;  
  4. }  
  5. double a = 1.14 * 75// 85.5 将表示为 85.4999...  
  6. System.out.println(Math.round(a)); // 输出值为85  
  7. BigDecimal d = new BigDecimal(1.14); //造成精度丢失  

这个也是一个老生常谈的错误. 比如计算100笔订单, 每笔0.3元, 最终的计算结果是29.9999971. 如果将float类型改为double类型, 得到的结果将是30.000001192092896. 出现这种情况的原因是, 人类和计算的计数方式不同. 人类采用的是十进制, 而计算机是二进制.二进制对于计算机来说非常好使, 但是对于涉及到精确计算的场景就会带来误差. 比如银行金融中的应用. 
因此绝不要用浮点类型来保存money数据. 采用浮点数得到的计算结果是不精确的. 即使与int类型做乘法运算也会产生一个不精确的结果.那是因为在用二进制存储一个浮点数时已经出现了精度丢失. 最好的做法就是用一个string或者固定点数来表示. 为了精确, 这种表示方式需要指定相应的精度值. 
BigDecimal就满足了上面所说的需求. 如果在计算的过程中精度的丢失超出了给定的范围, 将抛出runtime exception. 

Java代码  收藏代码
  1. BigDecimal total = BigDecimal.ZERO;  
  2. for (OrderLine line : lines) {  
  3.   BigDecimal price = new BigDecimal(line.price);  
  4.   BigDecimal count = new BigDecimal(line.count);  
  5.   total = total.add(price.multiply(count)); // BigDecimal is immutable!  
  6. }  
  7. total = total.setScale(2, RoundingMode.HALF_UP);  
  8. BigDecimal a = (new BigDecimal("1.14")).multiply(new BigDecimal(75)); // 85.5 exact  
  9. a = a.setScale(0, RoundingMode.HALF_UP); // 86  
  10. System.out.println(a); // correct output: 86  
  11. BigDecimal a = new BigDecimal("1.14");  

不使用finally块释放资源 

Java代码  收藏代码
  1. public void save(File f) throws IOException {  
  2.   OutputStream out = new BufferedOutputStream(new FileOutputStream(f));  
  3.   out.write(...);  
  4.   out.close();  
  5. }  
  6. public void load(File f) throws IOException {  
  7.   InputStream in = new BufferedInputStream(new FileInputStream(f));  
  8.   in.read(...);  
  9.   in.close();  
  10. }  

上面的代码打开一个文件输出流, 操作系统为其分配一个文件句柄, 但是文件句柄是一种非常稀缺的资源, 必须通过调用相应的close方法来被正确的释放回收. 而为了保证在异常情况下资源依然能被正确回收, 必须将其放在finally block中. 上面的代码中使用了BufferedInputStream将file stream包装成了一个buffer stream, 这样将导致在调用close方法时才会将buffer stream写入磁盘. 如果在close的时候失败, 将导致写入数据不完全.  而对于FileInputStream在finally block的close操作这里将直接忽略. 
如果BufferedOutputStream.close()方法执行顺利则万事大吉, 如果失败这里有一个潜在的bug(http://bugs.sun.com/view_bug.do?bug_id=6335274): 在close方法内部调用flush操作的时候, 如果出现异常, 将直接忽略. 因此为了尽量减少数据丢失, 在执行close之前显式的调用flush操作. 
下面的代码有一个小小的瑕疵: 如果分配file stream成功, 但是分配buffer stream失败(OOM这种场景), 将导致文件句柄未被正确释放. 不过这种情况一般不用担心, 因为JVM的gc将帮助我们做清理. 
Java代码  收藏代码
  1. // code for your cookbook  
  2. public void save() throws IOException {  
  3.   File f = ...  
  4.   OutputStream out = new BufferedOutputStream(new FileOutputStream(f));  
  5.   try {  
  6.     out.write(...);  
  7.     out.flush(); // don't lose exception by implicit flush on close  
  8.   } finally {  
  9.     out.close();  
  10.   }  
  11. }  
  12. public void load(File f) throws IOException {  
  13.   InputStream in = new BufferedInputStream(new FileInputStream(f));  
  14.   try {  
  15.     in.read(...);  
  16.   } finally {  
  17.     try { in.close(); } catch (IOException e) { }  
  18.   }  
  19. }  

数据库访问也涉及到类似的情况: 
Java代码  收藏代码
  1. Car getCar(DataSource ds, String plate) throws SQLException {  
  2.   Car car = null;  
  3.   Connection c = null;  
  4.   PreparedStatement s = null;  
  5.   ResultSet rs = null;  
  6.   try {  
  7.     c = ds.getConnection();  
  8.     s = c.prepareStatement("select make, color from cars where plate=?");  
  9.     s.setString(1, plate);  
  10.     rs = s.executeQuery();  
  11.     if (rs.next()) {  
  12.        car = new Car();  
  13.        car.make = rs.getString(1);  
  14.        car.color = rs.getString(2);  
  15.     }  
  16.   } finally {  
  17.     if (rs != nulltry { rs.close(); } catch (SQLException e) { }  
  18.     if (s != nulltry { s.close(); } catch (SQLException e) { }  
  19.     if (c != nulltry { c.close(); } catch (SQLException e) { }  
  20.   }  
  21.   return car;  
  22. }  

finalize方法误用 

Java代码  收藏代码
  1. public class FileBackedCache {  
  2.    private File backingStore;  
  3.      
  4.    ...  
  5.      
  6.    protected void finalize() throws IOException {  
  7.       if (backingStore != null) {  
  8.         backingStore.close();  
  9.         backingStore = null;  
  10.       }  
  11.    }  
  12. }  

这个问题Effective Java这本书有详细的说明. 主要是finalize方法依赖于GC的调用, 其调用时机可能是立马也可能是几天以后, 所以是不可预知的. 而JDK的API文档中对这一点有误导: 建议在该方法中来释放I/O资源. 
正确的做法是定义一个close方法, 然后由外部的容器来负责调用释放资源. 
Java代码  收藏代码
  1. public class FileBackedCache {  
  2.    private File backingStore;  
  3.      
  4.    ...  
  5.      
  6.    public void close() throws IOException {  
  7.       if (backingStore != null) {  
  8.         backingStore.close();  
  9.         backingStore = null;  
  10.       }  
  11.    }  
  12. }  

在JDK 1.7 (Java 7)中已经引入了一个AutoClosable接口. 当变量(不是对象)超出了try-catch的资源使用范围, 将自动调用close方法. 
Java代码  收藏代码
  1. try (Writer w = new FileWriter(f)) { // implements Closable  
  2.   w.write("abc");  
  3.   // w goes out of scope here: w.close() is called automatically in ANY case  
  4. catch (IOException e) {  
  5.   throw new RuntimeException(e.getMessage(), e);  
  6. }  

Thread.interrupted方法误用 

Java代码  收藏代码
  1. try {  
  2.         Thread.sleep(1000);  
  3. catch (InterruptedException e) {  
  4.         // ok  
  5. }  
  6. or   
  7. while (true) {  
  8.         if (Thread.interrupted()) break;  
  9. }  

这里主要是interrupted静态方法除了返回当前线程的中断状态, 还会将当前线程状态复位. 

Java代码  收藏代码
  1. try {  
  2.         Thread.sleep(1000);  
  3. catch (InterruptedException e) {  
  4.         Thread.currentThread().interrupt();  
  5. }  
  6. or   
  7. while (true) {  
  8.         if (Thread.currentThread().isInterrupted()) break;  
  9. }  

在静态变量初始化时创建线程 

Java代码  收藏代码
  1. class Cache {  
  2.         private static final Timer evictor = new Timer();  
  3. }  

Timer构造器内部会new一个thread, 而该thread会从它的父线程(即当前线程)中继承各种属性. 比如context classloader, threadlocal以及其他的安全属性(访问权限).  而加载当前类的线程可能是不确定的, 比如一个线程池中随机的一个线程. 如果你需要控制线程的属性, 最好的做法就是将其初始化操作放在一个静态方法中, 这样初始化将由它的调用者来决定. 
正确的做法: 
Java代码  收藏代码
  1. class Cache {  
  2.     private static Timer evictor;  
  3.         public static setupEvictor() {  
  4.                 evictor = new Timer();  
  5.         }  
  6. }  

已取消的定时器任务依然持有状态 

Java代码  收藏代码
  1. final MyClass callback = this;  
  2. TimerTask task = new TimerTask() {  
  3.         public void run() {  
  4.                 callback.timeout();  
  5.         }  
  6. };  
  7. timer.schedule(task, 300000L);  
  8. try {  
  9.         doSomething();  
  10. finally {  
  11.         task.cancel();  
  12. }  

上面的task内部包含一个对外部类实例的应用, 这将导致该引用可能不会被GC立即回收. 因为Timer将保留TimerTask在指定的时间之后才被释放. 因此task对应的外部类实例将在5分钟后被回收. 

Java代码  收藏代码
  1. TimerTask task = new Job(this);  
  2. timer.schedule(task, 300000L);  
  3. try {  
  4.         doSomething();  
  5. finally {  
  6.         task.cancel();  
  7. }  
  8.   
  9. static class Job extends TimerTask {  
  10.         private MyClass callback;  
  11.         public Job(MyClass callback) {  
  12.                 this.callback = callback;  
  13.         }  
  14.         public boolean cancel() {  
  15.                 callback = null;  
  16.                 return super.cancel();  
  17.         }  
  18.         public void run() {  
  19.                 if (callback == nullreturn;  
  20.                 callback.timeout();  
  21.         }  
  22. }  
作者:星辰 时间:2016-09-09 浏览 716评论 0 赞 0砸 0 标签: 面试题 Java基础知识 demo
评论
还可以再输入500个字

请您注意

·自觉遵守:爱国、守法、自律、真实、文明的原则
·尊重网上道德,遵守《全国人大常委会关于维护互联网安全的决定》及中华人民共和国其他各项有关法律法规
·严禁发表危害国家安全,破坏民族团结、国家宗教政策和社会稳定,含侮辱、诽谤、教唆、淫秽等内容的作品
·承担一切因您的行为而直接或间接导致的民事或刑事法律责任
·您在NoteShare上发表的作品,NoteShare有权在网站内保留、转载、引用或者删除
·参与本评论即表明您已经阅读并接受上述条款